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AN INVESTIGATION OF PARTIAL ASYMPTOTIC STABILITY*

A.S. ANDREYEV
Ul'yanovsk

(Received 12 April 1991)

The problem of the partial attraction of motion and the asymptotic
stability of unperturbed motion is investigated, on the assumption that
there exists a Lyapunov function with a positive or negative definite
derivative. The solution of the problem is based on defining certain
dynamical properties of the positive limit set, of the continuity and
invariance type. The results, modify and generalize various well-known
theorems of partial asymptotic stability. Examples are considered.

1. Consider the system of equations

£ =X(ta); X:R xT—R" (1.1)
z&ER™, z=(y,2), y= R, z& R’ (m=s -+ p)
RB* =0, + oo [, T = {lyll<H> 0, |l 2]l << + o0},
Mzl =1yl +izl

Uyl is a norm in R’and ||z|| is a norm in R?). The function X satisfies the conditions
of the Carthéodory existence theorem /1/ and the conditions that ensure that the solutions are
z-extendible /2/.

Let z =z (¢ ¢, 2) be some solution of system (1.1) defined for all t>>t, The partial
positive limit set of this solution «," (z (¢, t,, %)), is the set of points rel,={y= Rr:
llyll<< H}, for each of which there exists a sequence f,—-+ such that =y (t,, &, 2o) > y*
/3/.

By imposing additional conditions on the right-hand side of (1.1), we can establish
analytical properties of oy (z (¢ ty, 2,)), of the continuity and invariance type.

Continuity property of w,'(z (i, t,, z,)). Let us assume that the function Y {t,z): R* x I' - R®
satisfies the following condition: for every set T, = {llyll<{ H, < H, |lz]l<< + o} there exists
a non-decreasing function y;: R* — R* which is continuous at zero, p,(0) =0, and is such
that for any continuous function u: [a, bl - T,

b
[§¥ @ u@yar]<p(o—a) (1.2)

a

If this condition is satisfied, then for every solution =z =z (t ¢, z,) of system (1.1)
the function p,(f) is an estimate for the continuity of the y-component of the solution
y (t, ty, 7,) for all ¢2>1¢ such that z (¢ ¢, z) =T, In particular, if z (4 t, z,) =T, for
all t>>t, then y(t t,, z,) is continuous uniformly in t& ¢, + oo [.

Hence it follows that, for some solution =z =z (t, ¢,, z,), if the set of y-limit points
is such that e, (z (¢, 2y, %)) [} [y 5= 7, then for every point y* < o, (z(t, ty, 2,)) [ I, there

exists a continuous function y =1 (f): la, [ — I, such that PO =y* 0=1le, pl), and more-
over {y =% (1): a <t <P} T o (2, (t, to, 7).
The property of invariance of wy* (z (1, ty, 7,)). Let us assume that the function Ytz

R* x T'—> R° satisfies the following condition: for every set T, = {lyll < H,, ||lz]l< + oo}
there exist two locally integrable functions A, (f) and 7, ()= L, such that for all te R
Yy hEly = yE Ryl < H), 2= R,
Y @yl <r @ (1.3)
MY (490,20 =Y Gy 2l < (Ollye — 3ol
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and, moreover, A, () 1is uniformly continuous in the mean and 17, (#) is uniformly bounded
in the mean, i.e.,

{n@ar<e, { n@dargn, (1.4)
E t

for any ¢ >0, t< R*, any set EC {t,t +1] of measure m(E)<§ () >0 and some number N,
/4/.

For every domain I, fix numbers 6, and N, as in (1.4). Define Fy as the space of
functions ¥: R x Ty »~ R® for each of which and every domain T,; there are two functions
A (8, ) and ), (¢, ¥) that satisfy inequalities of the form (1.4) with the fixed numbers §,
and N, and in addition, for all (& R,y y, 1. = Ty

HE Gl <™ &1, TY ¢ —Y Gyl <@ Oly— nll

Using well-known results /4/, one can show that Fy is a compact metrizable space.
For some number H,<<H we let M, (t, t,) C I, denote the set defined as the union over
all z,= T, = {llzl| < Hy,} of the z-components of the solutions =z = z(t, ¢, z,), i.e.,

M, (¢, ) = U {2 (2, ty, zo): 1l 2o || << Ho}

Let z=z()& M, (t,t;) be an arbitrary continuous function. Define Y  (¢,y) =Y (¢, y, z (8)).
The family of shifts (Y. ({,y) =Y ' (t 4+ 1,¥), 1< R}, by the definition of Fy, will be pre-
compact in Fy.
Consider some solution x = x (i, &y, 24), (fp, zo) &= R* X T of system (1.1), defined for all
[ =7 The component ¥ (i) =y (i, &y, Zs) is a solution of the first s equations of system (1.1),
i.e., of the system .
Y=Yy, Y=Yy 2z 2 =z{ 1 5) (1.5)

It can be shown /4/that the precompactness of the family {Y. (% y)} and the existence of
the 1limit functions ¥ implies the precompactness of system (1.5) and the existence of a family

of limit systems .
y=¥@ty, Yerfy (1.8)

System (1.5) is regular in the sense that the solutions of system (1.6) have the unique-
ness property.

The set ®," (z (2, ty, 25)) for a solution of system (1.1) to identical with the set o” (y (1)
for the corresponding solution of system (1.1), which is quasi-invariant relative to the
family of limit systems {(1.6) /4/. Hence it follows that the set ;" (z (¢ £, 7)) 1is also
quasi-invariant relative to system (1.6). To be precise: for every point y, = w,’ [} I, there
exists a solution y=%(t): la, pl—=>T,, 9 (0) =y (0= la. () of one of the limit systems (1.6)
such that

p=9@: et BT o) @(tt, zo))

Remark 1. By analogy with (1.6), we can define a family of limit systems relative to
the one-parameter family of functions {z, ()= M. (s, v),v= R*}. The right-hand side V¥ (. y of the
limit system is then defined as a limit point of a certain sequence (Y, (t, y):v = vn — | oo}

Invariance properties of o' (x(t, I, zp)) and o,* (z (¢ %, Z)). Let us assume that the
right-~hand side of system (1.1) satisfies the following condition: for any compact subset
Kel BX @D <re (), HX(E z)—X ¢ z)li<Kng Ollzs— 24l (1.7)
where the functions Ak, Nx & L, are such that there exist two numbers N = N (K) and § =
8§ (K,e) >0 that satisfy inequalities of type (1.4). Under this condition the family of
shifts {X.(t,z) = X (¢ + 7, 2), T R'} is precompact in some metrizable compact function space
Fo /4/, system (1.1) may be associated with the family of limit systems

=0z, dP=Fo (1.8)
and moreover the complete positive limit set o (z(f, %, %)) 1is quasi-invariant with respect
to (1.8). Thus, for solutions of system (1.1) which are bounded as functions of 2z, the set
@y (z (8, Ly, 2y)) is defined as the projection (w* (z (¢, t, Zp))y. If the solution is not bounded
as a function of 2z, we proceed as follows.

Let us assume that the function Z:R* X I' > RP satisfies the condition: for any con-
tinuous function u=u (t): R* > T and every v & 10,1}

N
1§z umyar]<iw (1.9)
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When this is the case, the z-component (z (t) = z (t, &y, xp)) of a solution of (1.1) which
is defined for all ¢> 1 has bounded variation llz(t+ 1) —z (@< I(T + 1) over every

interval [0, T), uniformly in <t & [t,+ oo [. Consequently, if  [[z |l =z (4, &, zp) || > + o
as f;—+ oo, then for every t& R* also |z(t+ ¢t &), Z)|l> + o0 as j — + oo, and the
sequence of functions |z (¢ + ¢, %, 2o}l is bounded uniformly in e [0, T).

Let us assume now that Y (f,z) satisfies the following modification of conditions (1.3),
(1.4): for every set Ti={lyl)<H < H, | 2]l <+ o}, there exist a function A1) E Ly
which is uniformly continuous in the mean (i.e., satisfies the first condition in (1.4)) and
a constant N, such that for all t= R*, (y,z)& Ty and y,y, =Ty,

Y &y, 2]l <A (), (1.10)
lim | Y (2 95,2 — Y (&, gy, DI < Nillye — yoll
lzfl—-t-00
Analogous conditions will hold for every sequence of functions Y@y =Y (t+t vy
2 + 2 (#)), where ¢ — + oo and {z: ll 5|l = + o©} are arbitrary sequences, {z (¢)} an
arbitrary sequence of continuous functions which is uniformly bounded in [0, Tl Thus the

sequence {Y,’ (¢, y)} turns out, as in the case (1.3), (1.4), to be precompact relative to a
certain space Fy of functions ¥: R x I,-> RS. Also, system (1.1), in addition to systenm
(1.8), may be associated with a family of limit systems of the form (1.6) y = V¥ (¢, y).

By dint of this construction, we have the following invariance property for the set
ot (Z(tr by, 7). If y (tx, ty, 7)) >y* as t, — + oo and the sequence {z; = z (t, &, z,)} is
bounded, there is a solution z = ¢ (f) = (§ (¢), 6 (1)) of the limit system such that ¢ (0) = y*,
y =1 () 1is contained in %, (z (¢, %, 2;)) over the entire interval of definition la,pl of
the solution z = ¢ (). But if |} z/||— + o. then there is a solution y = ¥y ({) of the limit
system y =W (¢, ) such that ¢ (0) = y* {$ () a < t< B} C o, (z (¢ t, 1)), and the right-hand
side ¥ (t,y) of the system is a limit point of the sequence (Y, (¢, y) =Y (t; + t. ¥, z + 2 (1),
7 (t) = 2 (& + £ b, 20)}.

Remark 2. The additional restrictions imposed onz(: z) make it possible to take the 2z-
properties of system (1.1) into consideration as |z~ -+ 2. This formulation of the problem
was considered in /5/.

2. Assume that there exists a continuous function V (¢, z): R* X '~ R  for system (1.1),
which satisfies a local Lipschitz condition with respect to x and thus has a derivative
V(¢ z) /6/. Suppose that the derivative satisfies an inequality Vit z) < =W (¢ 2) << O,
where W: R* X I' > R* is some function satisfying the Carathéodory conditions, as in the case
of X (¢, 2). )

Let us investigate the limiting behaviour of the solutions of system (1.1) as functions
of y, depending on the conditions imposed on the right-hand side X (¢, 2). To that end we
need some definitions.

Let t,—> 4 oo be a certain sequence and t= R, ¢&=R certain numbers. The set
Po(t,c) T, is the set of points ye&T, for which there exist sequences y,—y and
{z, & R?}  such that

Hm V (b + £, s 2) = ¢

n—oe

Let us assume that W (¢, 2) satisfies conditions of type (1.3),
W@ I <M@O, IWE =W, g2 < (O g — will (2.1

where A () =L; is uniformly continuous in the mean and v, (f) & L, is uniformly bounded in
the mean, i.e., formulae similar to (1.4) are satisfied.

As done previously for Y (t, z), it can be shown that there exists a compact metrizable
space Fg of functions Q: R X Iy~ R* in which the family of shifts (W (4, 9y =W (t +1,9),
W' (t,y) = W(t y,z())) 1is precompact for any continuous function z(f) &= M, (¢ t,). And for
any sequence ¢, > 4 oo there exist a subsequence t,;—> + oo and a function Q= Fq such
that, for any sequence of continuous functions y; (#): [, bl - I, which converges uniformly to
v* (1): la, b1 > T,

b b
§@or @) dr—=Lim (W (10, + 0, 0), 2(t,y + e

We see that Q is a limit function for W with respect to z(8) &M, (t, to)-
We shall view the set of values {y = ¢ (#): a < ¢t< B} as contained in {Q(z, y) = 0} if
for any ¢, t,ela Bl,

’
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t

.\‘:Q (t, P (v))dr==0

f,

Theorem 1. Assume that

1} Y {t, ) satisfies condition {1.2);

2) there exists a function V = V (¢, z), bounded below on every set R* xT,, which has a
derivative along trajectories of system (1.1) such that V™ (¢, x)<{—W(t, z) {0, where W
satisfies (2.1);

3} a ==z (L, t, Zo) is a solution of system (1.1) which is bounded as a function of y.liy(t,
totI<C H < H for all t>> 1,

Then the set ," {z {t. {;, 7)) of this solution is a union of subsets of continuous values
=9 —oo<t<( 400} T {Pult,c): c =¢5=const} NV {R{ y) =0}, where Q(f y} is the limit
function for ¥ with respect to z = z (i, {, z,) defined by the same sequence t ~ 4+ o0 as

= (1)

Proof. 1t follows from conditions 2 and 3 of the theorem that there exists ¢ = ¢, = const

such that

,lif.l VAL y (8 tg, o), 2 {t B, 26)) = G 2.2)

Suppose that z (f) = z (i, {5, 2p). Let y* < w,* (2 (8, %, %)), 1in fact, let y (&, by, 7o) ~y* as
tx—> -+ eo. By condition 1 of the theorem, there exist a subsequence k;— oo and a continuous
function y = ¢ (f): R—>Ty; such that ¥(0) = y* and the sequence y;(t) =y (i, +t, &, L) converges
uniformly in t<[—T, 1 to y=1+9(f). Moreover, {y=v (it R} T o," and by (2.2) we have

Hm Vit + & oy (8 2t +8) = ¢

Jowon

Hence it follows that (f) €5 {Px (L, ¢): ¢ == ¢y = const} for all t& R,
The condition V'* (4, 2) { —W (t, 1) <0 implies that

£
V (b + ) —V (t) <~ § Wiy (7, yys () dr <O
¢

Wi {6y (8) =W (b 4+ 1, yxs (0, 2 (8 + 1))

Consequently, choosing a subsequence kj; — o  for which {W,;ji (t, ¥y)} converges to some
limit function (¢, 3 and letting kj— oc, we find that

{fr=v{r t=RYC{QEy =0}

Thus, for every point y* < w," there exists a continuous function ${fj: R—1T, such
that ¢ (0) = y*, {$ () tS R} T o, V@) & {Pu{t,¢): ¢ = ¢, = const} | {Q(t, y) =0} for all i< R,
This completes the proof.

The quasi-invariance property of the positive limit set o (z (¢, ty, Zo)) or o, (z (¢, ty, 7))
enables us to establish a qualitative modification of the result.

Let Y {t,z) and W (t 2) satisfy conditions (1.3} and (2.1}, respectively. The limit
functions for Y and W, that is, ¥ and Q, respectively, form a limit pair (¥,Q) if they
are defined relative to z ()&= M. (1, %) for the same sequence f, — -+ oo. Define the set
P (L, c) for the same seguence.

Let N {c) denote the maximum subset of {Pe (f,¢): ¢ = const} [ {Q(s, y) = 0} which is
invariant with respect to the system ¥y =%¥(y, and N, {(c) the union of the sets N (¢
over all limit pairs (¥, Q) relative to the function z ()& M, (¢, t).

Theorem 2. Under the assumptions of Theorem 1, assume in addition that Y ({, z) satisfies
conditions (1.3).

Then there exists ¢ = cp=const such that o, {z (i, f, L)) Ny (o). i.e., ¥ (2 fy, 2o} > Ny (6)
as t— -+ oc.

Let us assume that the functions X (t,2) and Y (;,2) satisfy conditions (1.7) and
(1.10), respectively, and W (¢, 1) satisfies both condition (2.1) and a condition similar
to (1.10). We borrow the following notation from /7/. If (®, A) 1is a limit palr for (X, W),
defined together with the set Va(t,¢) by some sequence t,— -+ oo, then E(¢) is a maximum
subset of {VZ {t ¢} ¢ = const} {} {A{t, ) = 0} invariant with respect to the system z = @ (I, ),
E* (¢) the union of the sets E{¢) over all limit pairs (@, A) and (£%), the projection
of E* on the hyperplane z = 0.
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Theorem 3. Under the assumptions of Theorem 1, assume in addition that the functions
X (t, z), Y (t z), W(t, z) satisfy conditions (1.7) and (1.10).

Then there exists ¢ = ¢, = const such that o,* (z (s ), Zo}) T (E¥)y | Ny, 1.€., Y (¢, &, zo) —
(E* (co))y U Ny () as t — + oo.

Remark 3. The set N*(c,) in the conclusion of Theorem 3 contains the y-limit points
of the solution z= z(t, t,, z,) defined by sequences {y (ix, ty, xo) — ¥, | 2 (tx, o, Zo) | — + o0}, and E* (¢ )
contains the y-limit points of z =z (4 4, %) such that |z{t, & z)|<! for all it — + .

3. If we assume that X (;, 0)=0, system (1.1) has the trivial solution z = 0.
Reasoning from the previous results, depending on our assumptions concerning X, we can derive
sufficient conditions for the solution z =0 to be asymptotically stable with respect to
the variables y. The conditions are stated below as theorenms.

Theorem 4. Assume that

1) there exists V =V (i, z), V(¢ 0) =0, which is positive definite as a function of
vV, D>k (lyl)>>0 /9/, and has a derivative along trajectories of system (1.1), V™ (1,
DL =W(, 2 <0

2) for every function Q (¢, y) which is a limit function for W (t, y,z (1)) relative to
an arbitrary function z =1z () = M, (L, 1),

{Pw (t,¢): e =comst> 0} [ {R(t,y) =0} = {y = 0}

Then the solution z=10 of system {1.1) is asymptotically y-stable.
The assumptions of this theorem relative to V' are weaker than those of Rumyantsev's
theorem /8, 9/ or of analogues of Marachkov's theorem /10, 11/.

Example 1. Consider the linear systenm
Y= —sin? ty 4 2, — gpel, 77 = zef, 7, = et (3.1)

The derivative of this system for the function 2V =y -t (5 — zef)2 1S V= ~sin? 52 < 0.
Since (s — ') << 2V < 2¥, along solutions of the system, the right-hand side of the first
equation in (3.1) satisfies condition (1.2) along every solution. The limit function for
W(ty) =sin?ey? 1is Q (¢ y) = y¥sin? ({ + @), @ = const, 0 < @ < n. By Theorem 3, the solution y=z=2z=20
is asymptotically stable. This result was obtained for a similar system in /9, 12/ by
estimating the second derivative of V.

Theorem 5. Assume that condition 1 of Theorem 4 holds, and also the following condition:
for every function z ()= M, (, ) there exists at least one limit function Q(t,y) for
W (t, y, z (1) such that  {P, (¢, ¢): ¢ = const >0} (] {Q (¢, y) = 0} = .

Then the solution z =0 of system (1.1) is asymptotically y-stable uniformly in z,.

Theorem 6. In addition to condition 1 of Theorem 4, assume that V-(t, z) <k, (| xll), and
also that for every limit function R (¢ y) relative to an arbitrary family of functions
{2, () & M. (t, Vp), vy —> + ¢ as n->oc}, we have {Ps (f,¢): c = const >0} ) {Q(t y) =0} = .

Then the solution =0 of system (1.1) is uniformly asymptotically y-stable.

The assumptions of Theorems 4-6 are weaker than the corresponding assumptions of numerous
earlier results /2, 8-10, 13/.

Let us assume that Y (¢, 2) satisfies conditions (1.3), (1.4}, so that w;' (z (%, ¢, z,))
is quasi-invariant with respect to systems (1.6).

Theorem 7. Assume that

1) there exists a function V=V (£, 1), V(¢ 0 =0,V o) =h(lyl) =0 V(o)< —W(2)<<0;

2) for every limit pair (¥, Q) relative to an arbitrary function z ()& M, ({t t), the
maximum subset of the set {Py (f,¢c): ¢ = const == 0} [} {Q (¢, y) = 0} which is invariant with
respect to the system y' =W¥(i,y) consists at most of the point y = 0.

Then the solution gz =0 of system (1.1) is asymptotically y-stable.

Theorem 8. Suppose that in addition to condition 1 of Theorem 7 the following condition
is also satisfied: relative to every function 2z (8 & M. (i, {,), there exists at least one limit
pair (¥, Q) such that the set (P (¢, c):c=const >0} ] {Q(t,y) =0) contains no solutions
of the system y =W (¢, p).

Then the solution z =0 of system (1.1) is asymptotically y-stable uniformly in z,.

Theorem 9. 1In addition to condition 1 of Theorem 7, assume that V (¢, x) <h,(|z]), and
also that the following condition is satisfied: for every limit pair (¥, Q) relative to an
arbitrary family of functions {z; () EM, (¢, vx), vk > + o as k— oo}, the set {Pu (t, ¢} ¢ =
const > 0} (1 {Q (¢, ¥) =0} contains no solutions of the system y = ¥ (i, p).

Then the solution z =0 of system (1.1) is uniformly asymptotically y-stable.

Example 2. Consider the system
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U=y b p (0 g — na® sind ¢ (4 4 sind (2 4 z)) 8-2)
Yo' = P (D) ¥y~ Yo+ ¥ 6in® £ (4 + sin? (z, + 2,))
5 =hH( oy 2 =Ly, 2

where p (5 is a continuous function, O0<p(h <1, and so £ {4 0,0) = f, (1 0, 0) = 0.
Limiting equations for the first two equations are

=y b et (1) g ae? SN (o) (T4 ¢ () (3 3)
g o= pr Aty — -yt sint (C o) (4 ¢* (2)

where p* (8 and ¢* {8 are limit functions for p( and sn®(n{-+%n (), and so ¢ B>0.

The derivative of the function V= (5?4 p%)/2 along trajectories of system {3.2) is
V'~ — 12*<0. It can be shown that the set {y2 -+ y2>0} () {y, =y} contains no solutions of
the limit system {3.3). By theorem 89, the trivial solution of system {(3.2) is uniformly
asymptotically Yy-stable.

Similarly, starting from Theorem 3, we can deduce results relating to asymptotic y-
stability, asymptotic y-stability uniform in zy, and also y-instability when the right-hand
side of system (1.1) satisfies conditions (1.7), (1.9) and (1.10). They will not be presented
here; similar results, incidentally, were obtained by other technigues and in a different
form in /14, 15/.

Under conditions (1.7}, (1.9}, and {1.10), we can also prove the following

Theorem 10. Assume that
1) there exists a function V = V ({,z) such that

Lty <VEg<hilzl), Ve W0

2) for any limit pair (@, A) of (X, W), the set {Vo ' (t.e): ¢ =const >0} {A{t, 2) =
0} contains no solutions of the system y =W (1, y);

3) for any limit pair (¥, Q) of (¥Y,W) relative to an arbitrary sequence of continucus
functions {z; ()}, the set {P, (i, o) ¢ =const >0} {Q(, » =0} contains no solutions of
the system y =W (¢, ).

Then the solution z =0 of (1.1) is uniformly asymptotically y-stable.

We also note that similar technigues will yield results concerning partial instability.

Example 3. Consider an inhomogeneous sphere rolling and rotating without loss of contact
over a rough horizontal plane Ory which is oscillating vertically according to the law z=1z(s)
about a fixed axis ] 0z, where the 02 axis is directed vertically upward. Let us consider
the case in which the centre of mass of the sphere is not its centre 0,, but the central
ellipsoid of inertia is an ellipsoid of revolution and the axis of symmetry passes through
the centre of the sphere. The configuration of the body is determined by the Cartesian
coordinates z, ¥y of the point of contact of the sphere with the surface, the Résal angles 6
and ¢ and the angle of revolution ¢ about the dynamical axis of symmetry [ which is
parallel to the plane Oxz /16/.

Using the notation of /16/, we will consider the stability of the two families of
equilibriun positions for the sphere in which

8=0, =0, 8— 7, ¢ =0
and the centre of mass is on a single vertical below and above the point 0, respectively.

Taking V= T/(g-} 5) —mlicosPcos B8, where T is the kinetic energy of the body, as a
Lyapunov function, we apply Theorem 9, to find that -under the action of viscous friction, on
the assumption that

% (g + 27 () + =D (mAE L 2mIR A+ mit) >oe

the first family of equilibrium positions is uniformly asymptotically stable with respect to
©, ¥, 0, 9,%, 8 ¢; the second is unstable.

Example 4. B question of practical interest is that of the stability of steady motions
of a Cardan-suspended gyroscope and the effect of the parameters on its stabiliey /17, 18/.

Using the formulation and formulae given in /18/, we will consider the case of a systenm
in which, driven by certain forces, the outer frame rotates at a constant angular velocity €
about a vertical axis, the heavy asymmetric rotor has a variable angular velocity dp/dt= w (1),
and the axis of the inner frame is horizontal. We will single out those motions of the
system in which the axis of the rotor points along the vertical, and the angle of revolution
of the inner frame is accordingly & =20

We will take as the Lyapunov function
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V =1/, (A cost ¢ + B sin? ¢) 'Yk (1, ¢, &) + sin® /D), k(t, @, ¥ =
CQw (8) + Mgay + (C' — By — B cost ¢ — A sin? ¢) Q2 cos? (1/;8) —
(A — B) Qo (2) sin ¢ cos? (1/y8) (inf (£ (¢, 9, 0), 0 << @ < 271) > k, >0)

After some computations we find that V' < —k®2<0, if

inf (k (£, ¢, U) (2h — (4 — B) 0 sin? @) + (4 cos? ¢ | B sin® ) X
ak ok
(ﬁ(t,w,m_'r%(:, q),(;')u)), 0<g<2n> k>0

Setting up the limiting equations and applying Theorem 9, we conclude that under these
conditions the corresponding motion of the object is uniformly asymptotically stable with
respect to & and ¢. Analysis of the conditions indicates that the asymmetry of the rotor
affects stability in an important way; at large o values the coefficient of viscous friction
h should be fairly large.

We note that when o= —Mgq,/CQ the system may also move with the rotor axis horizontal,
¢ = n/2. Following the previous analysis, we find the following sufficient conditions for
this motion to be asymptotically stable with respect to ¢ and ¢:

ko= (B+ B, — C') Q2 — (A — B) Mga,J/JC>0
(2h — (A — B) Mga JICQ) kg — A (A — B (| Q]| 0*+ Q2| @]|)>0

where we have assumed, to fix our ideas, that 4 > B.

The author is indebted to V.V. Rumyantsev for his interest and for useful discussions
of this paper.
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