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AN INVESTIGATION OF PARTIAL ASYMPTOTIC STABILITY* 
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The problem of the partial attraction of motion and the asymptotic 
stability of unperturbed motion is investigated, on the assumption that 
there exists a Lyapunov function with a positive or negative definite 
derivative. The solution of the problem is based on defining certain 
dynamical properties of the positive limit set, of the continuity and 
invariance type. The results, modify and generalize various well-known 
theorems of partial asymptotic stability. Examples are considered. 

1. Consider the system of equations 

Z' = x (t, z); x : R+ x r * R”’ 

XE R”, 5 = (y, 4 y E R’, z E RP (m = s + p) 

R+ = [O, + 8 [, r = {II y II CR) 0, II 2 II < i- -1, 

II 5 II = II Y II + II z II 

(14 

(II Y II is a norm in R” and lIzI/ is a norm in Rp) The function X satisfies the conditions 
of the Cartheodory existence theorem /l/ and the conditions that ensure that the solutions are 
z-extendible /2/. 

Let I = 5 (t. t,, I~) be some solution of system (1.1) defined for all t>, 1,. The partial 
positive limit set of this solution my+ (z (t, t,, %I)) I is the set of points 

1:F HJ7 
for each of which there exists a sequence t;+-+ JS 

,y* E ru = {YE Rb: 
such that Y (t,, t07 %I) * Y* 

By imposing additional conditions on the right-hand side of (l-l), we can establish 
analytical properties of o~+(z(~, t,,z,)), of the continuity and invariance type. 

Continuity property of ov'(~(t,t,,,~,J). Let us assume that the function Y(~,z): R+ x r+R 
satisfies the following condition: for every set r1 = {llyIl< H,<H, Ilzll< + -} there exists 
a non-decreasing function 111: R++R+ which is continuous at zero, 111 (0) = 0. and is such 
that for any continuous function u: [u, bi + rl 

115 Y (7, u @)I dz j/C IL~( I b - a I) (4.2) 
(1 

If this condition is satisfied, then for every solution z = ~(t,t,,,zJ of system (1.1) 
the function rl(t) is an estimate for the continuity of the y-component of the solution 

Y (t, to7 50) for all t> to such that x (t, t,, zo) E rl. In particular, if z (t, to. zo) f5 rl for 
all t > t,, then y(t, t,,z,) is continuous uniformly in t E [t,, f m [. 

Hence it follows that, for some solution z = 5 0, t,, 50), if the set of y-limit points 
is such that my+ (Z (t, t,, 5J) p ru + P, 
exists a continuous function 

then for every point y* E ov+(~(t,tO,q,)) n rv there 
and more- 

over {Y = + 0): cc < t < PI 
Y =$(t): 1 a, B I+ rv such that q (0) = y* (0 E 1 a, p L), 

c my+ (z, (t, to, lo)). 

The property of invariance of q,+(z(t,t,, G,)). Let us assume that the function 
R+ x I’+ R” satisfies the following condition: for every set 

Y@, I) : 

there exist two locally integrable functions i,(t) 
rl = (IIY II < H,, II 2 II < + c-1 

and % (0 E 4 such that for all tE R+; 
Y. Y,. Y, E rlv F {Y E R” : II Y II < HI}, z E RP, 

II y (4 Yl 2) II < A, 0) (1.3) 
II y 07 YZF 2) - Y 0, Y1, 2) II < r), (t) II YZ - Y, I! 
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and, moreover, % 0) is uniformly continuous in the mean and rh (0 is uniformly bounded 
in the.mean, i.e., 

(1.U 

for any E > 0, t E R+, any set EC [t,t + 11 of measure m(E)< 6, (E)> @ and some number 
/4/. 

For every domain r1 fix numbers 6, and N, as in (1.4). Define FT as the space of 
functions '4: R x r,,-tp for each of which and every domain rlu there are two functions 

A, (t, 'u) and q&(t,Y) that satisfy inequalities of the form (1.4) with the fixed numbers 
and N, and in addition, for all tE R, y,y,,y,~ rlv, 

II y 0. y) II < A, (k W, II y (t, yz) - ‘y (t, Y,) II < rll (h yu) II Y2 - Yl II 

Using well-known results /4/, one can show that Fyis a compact metrizable space. 
For some number H,,<H we let M,(t, t,)C rz denote the set defined as the union over 

all z. E rO = {II+11 < Ho) of the z-components of the solutions z = 3 (t. t,, q), i.e. , 

Mz (t, to) = U {z (t, to, 4: II 50 II < HoI 

N, 

4 

Let z = 2 (t) E M, (t, to) be an arbitrary continuous function. Define Y’ (t, y) = Y (t, y, z (t)). 
The family of shifts {Yz' (t,y) = Y’(t ft,y),~~R+}, by the definition of Fv, will be pre- 
compact in FT. 

Consider some solution z = I (t, t,,, x00), (to, x0) E R+ X r. of system (l.l), defined for all 
t> to. The component y(t)= y(t, to,&,) is a solution of the first S equations of system (l.l), 
l.e., of the system 

y' = Y' (t, y), Y’ (L y) = Y ct, y, z (t)), 2 (t) = 2 (t. to, h)’ (1.5) 

It can be shown /4/that the precompactness of the family {YT’(t,y)} and the existence of 
the limit functions Y implies the precompactness of system (1.5) and the existence of a family 
of limit systems 

y' = Y (t, y), Y E FY (1.6) 

System (1.5) is regular in the sense that the solutions of system (1.6) have the unique- 
ness property. 

The set UJ~'(X(~,~~,J~)) for a solution of system (1.1) to identical with the set @'(y(t)) 
for the corresponding solution of system (l.l), which is quasi-invariant relative to the 
family of limit systems (1.6) /4/. Hence it follows that the set w,f(.z(t,to,zO)) is also 
quasi-invariant relative to system (1.6). To be precise: for every point y,,~ oy+ n r, there 
exists a solution y = $ (t): la, fi [ -+ r,,q (0) = y. (0 E I a. (3 [) of one of the limit systems (1.6) 
such that 

{y = II, (t) : a < t < B) c my+ (I ct7 to. 4) 

Remark 1. By analogy with (1.6), we can define a family of limit systems relative to 
the one-parameter family of functions (zv(t)= M,(t,v),v~ W). The right-hand side Y (t, y) of the 
limit system is then defined as a limit point of a certain sequence (Y,'(t, Y):v= %-+ml. 

Invariance properties of o+ (5 (t, 61, 20)) and oU+ (5 (t, to, ~0)). Let us assume that the 
right-hand side of system (1.1) satisfies the following condition: for any compact subset 

Kc r, 
II x (t, 411 <k(t)? IlJf(4 4-x (h 4II,(Ile (t)ll4--iII (1.7) 

where the functions hx, ?br E L, are such that there exist two numbers N = N(K) and 6= 
6 (K, e)>O that satisfy inequalities of type (1.4). Under this condition the family of 
shifts (X,(t,z) = X(t + r,z), zE R*) is precompact in some metrizable compact function space 
FQ /4/, system (1.1) may be associated with the family of limit systems 

t' = Q, (t, z), 9, E F, (1.8) 
and moreover the complete positive limit Set 6J+(I(t,to,Q,)) is quasi-invariant with respect 
to (1.8). Thus, for solutions of system (1.1) which are bounded as functions of a, the set 

my+ (5 (G 10, 50)) is defined as the projection (~+(z(t, ts,zo))v. If the solution is not bounded 
as a function of 2, we proceed as follows. 

Let us assume that the function Z:R+ X r+RP satisfies the condition: for any con- 
tinuous function u=u(t) :R+- r and every y E [O, 11 

(1.9) 
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When this is the case, the z-component (z (t) = z (t, to, 5)) of a solution of (1.1) which 
is defined for all t> to has bounded variation ']]z(t + T)-z(t)]]< l(T f 1) over every 
interval IO, Tl , uniformly in ZE [to,-t CO ]. Consequently, if ti zk ]] = ]] a (tk. 6% 20) 11 * + 00 

as tk-P+m. then for every TV R+ also llz (h + 6 to, 20) II + + m as I~-++co, and the 
sequence of functions ]Jz(tk f t, &,,zO)]] is bounded uniformly in TV [O, Tl. 

Let us assume now that Y(t,s) satisfies the following modification of conditions (1.3), 
(1.4): for every set I‘% = (]]Y]]< H,< H, I/all<+ m}, there exist a function & (1) E L, 
which is uniformly continuous in the mean (i.e., satisfies the first condition in (1.4)) and 
a constant N, such that for all TV R+, (y,z)~ r, and Yi! Y, E r,r 

Analogous conditions will hold for every sequence of functions yk’ (t, d = y (tk + t, Y, 

zk + zk (t)), where tk-++m and {zr: ]]zk(]+ + m) are arbitrary sequences, {zk 0)) an 
arbitrary sequence of continuous functions which is uniformly bounded in 10, T]. Thus the 
sequence {Y,'(t,y)) turns out, as in the case (1.3), (1.4), to be precompact relative to a 
certain space Fq of functions Y: R x r,+RS. Also, system (l.l), in addition to system 
(1.8), may be associated with a family of limit systems of the form (1.6) y'= Y(t,Y). 

Ry dint of this construction, we have the following invariance property for the set 

my+ (s(t: to, zo)). If Y (tkr t,, x0) -+y* as tt--+m and the sequence {zii = z (tr, t,, ~0)) is 
bounded, there is a solution .z = cp (t) = ($ (t), 8 (t)) of the limit system such that II (0) = Y*, 
Y = $ (4 is contained in o+~ (.z (t, t,,, 4)) over the entire interval of definition lu,B[ of 
the solution .z = q(t). But if (]zk]]+ + CX. then there is a solution y = q)(t) of the limit 
system y' = Y (t, y) such that J, (0) = y*, {lr, (t): a < t < fi) c oy+ (2 (t, t,,, I~)), and the right-hand 
side Y((t,Y) of the system is a limit point of the sequence (Yb'(t, Y) = Y (tP + t, y,zk + zk (t)), 

Zk (t) = z (k + t, t,, rll)). 

Remark 2. The additional restrictions imposed onZ(t,r) make it possible to take the a- 
properties of system (1.1) into consideration as Ij~jI--+rn. This formulation of the problem 
was considered in /5/. 

2. Assume that there exists a continuous function V(t,x): R’ x r-t R for system (1.11, 
which satisfies a local Lipschitz condition with respect to x and thus has a derivative 
v'; (t. x) /6/. Suppose that the derivative satisfies an inequality VT (t, X) < --w (t, z) < 0, 
where W: R+ x r-t R+ is some function satisfying the Caratheodory conditions, as in the case 
of x (t, x). 

Let us investigate the limiting behaviour of the solutions of system !l.l) as functions 
of Y, depending on the conditions imposed on the right-hand side x (t, f). To that endwe 
need some definitions. 

Let t,+ + 00 be a certain sequence and TV R, CER certain numbers. The set 
P, (t, c) c rv is the set of points ye rv for which there exist sequences Y, - Y and 

Gn E R") such that 

lim V (t, + t, y,, z,) = c 
n-m 

Let us assume that W(t,z) satisfies conditions of type (1.3), 

IW(h4 I<hW7 lW(~,Y,,z)--(~,Y,,~)l,<1,(t)IIy,-Yy,ll (2.1) 

where hi (t)E 15, is uniformly continuous in the mean and nl(t)~ L, is uniformly bounded in 
the mean, i.e., formulae similar to (1.4) are satisfied. 

As done previously for y 0, 4, 
space FQ of functions 9: R x r,.+R+ 

it can be shown that there exists a compact metrizable 
in which the family of shifts 

W' (t, Y) = w (& YV z 0))) 
{W,' (G Y) = W' (t + r, Y), 

is precompact for any continuous function z(t)EM,(t,t,,). And for 
any sequence t,+ + 00 there exist a subsequence Lj + + O” and a function 0~ FQ such 
that, for any sequence of continuous functions vj(t): [a,b]+r, 
U* (t): la, b] + rv, 

which converges uniformly to 

$ 1-1 Cl(z,v*(T))dt= !i_m S W(tmj + T? vj lT)T z (tnj + T)) dT 

We see that 52 is a limit function for W with respect to z(t)EM,(t,t,,). 
We shall view the set of values {y = q(t): a< 1< /3} as contained in {Q(t,Y) = 0) if, 

for any t,, t, E 1a.p I, 
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1: 

) CL (T, 21, (T)) dT == 0 

Theorem 1. Assume that 
1) P ft. z) satisfies condition 
2) there exists a function V = 

11.2); 
V(t,x), bounded below on every set R+ X ri, which has a 

derivative along trajectories of system (1.1) such that r*(t,x).<-W(t,~)<0, where W 
satisfies !2.1); 

3) z = z (t? to, 20) is a solution of system (1.1) which is bounded as a function of Y,[\Y(l, 
t,,,z,)ll,< Ht < H for all t > t,. 

Then the set ~~+(~(~.~~,~~)) of this solution is a union of subsets of continuous values 
(Y=*(t): -m<t<-+-oo)c{P,(t,c): c = c, = con&) ,I (51 (t, Y) = O}, where Q(t,Y) is the limit 
function for W with respect to z = z(t,t,,x,J defined by the same sequence t-t+c= as 
y = 9 (t). 

Proof. It follows from conditions 2 and 3 of the theorem that there exists c = cg = const 
such that 

Iin v (t, Y (t. k, x0), 2 (b, to, r,)) = co (2.2) I-+-m 

Suppose that z (t) = z (t, to, x,,). Let y* E WY+ (8 (t, to, x0)), in fact, let Y (tb, t,, zO)-+y* as 
tk-++". By condition 1 of the theorem, there exist a subsequence k,+ 00 and a continuous 
function Y = (r,(t) R-tl?, such that q(O) = Y* and the sequence Ykj(t) = y(txj + t, t,,,ro) converges 
uniformly in tE[--T,Tl to y=*(t). Moreover, {I=@: t E R)c: o,“, and by (2.2) we have 

Em V (l&j + t, $il,j (t). 
j-m 

z (t,j -f t)) = co 

Hence it follows that q(t)~ {P_((t, C):C = co = const) for all TV R. 
The condition v'*(t,x),< -PV(t,r)<O implies that 

Consequently, choosing a subsequence kji+ % for which {FV~ji(t,Y)} converges to some 
limit function Q it, Y) and letting kji+ rr, we find that 

{u = li: (tf: t E R) c {Q (t, g) = 0) 

Thus, for every point y*E ayf there exists a continuous function q(t): !?-+r, such 
that J# (0) = y*, {$ (t): t E R} C WC, q(t) E {P, (I, c): c = co = const) n {B (t, y) = 0) for all tG Ii. 
This completes the-proof. 

The quasi-invariance property of the positive limit set ot(s(t,to,zo)) or ~,'(r(t, tO,zo)) 
enables us to establish a qualitative modification of the result. 

Let Y (t, .z) and %V(t,x) satisfy conditions (1.3) and (2.1), respectively. The limit 
functions for Y and W, that is, Y and Q, respectively, form a limit pair (Y,Q) if they 
are defined relative to z(t)~M~(t,t~) for the same sequence t,,--t + m. Define the set 

pa (k c) for the same sequence. 
Let N(c) denote the maximum subset of {Pm (t,c): c =;n;4,' 11 {Q(t,Y) = 0) which is 

invariant with respect to the system Y' = Y (t, y), and the union of the sets N(c) 
over all limit pairs (Y,Q) relative to the function 2 (t) G M* (2. to). 

Theorem 2. Under the assumptions of Theorem 1, assume in addition that Y (t. +) satisfies 
conditions (1.31. 

Then there exists e = q=const such that wy+ (5 (t, to. +,))C Nt (co), i.e. , y (t, t,, ~~0) + IV, (co) 
as t-t-$-C=. 

Let us assume that the functions X(&s) and Y (t, z) satisfy conditions (1.7) and 
(l..lO), respectively, and W(t,z) satisfies both condition (2.1) and a condition similar 
to (1.10). We borrow the following notation from /7/. If (0, A) is a limit pair for (X, W), 
defined together with the set V-,‘(t,c) by some sequence t,+ -I- ~ij, then E(c) is a maximum 
subset of {c (t, c): c = const} fl (2% (8. 2) = 0) invariant with respect to the system 2. = @((1, X), 

EP (c) the union of the sets E (cl over all limit pairs (ot. A) and (E*), the projection 
of E* on the hyperplane z = 0. 
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Theorem 3. Under the assumptions of Theorem 1, assume in addition that the functions 

x (& z), y (& .% w (11 2) satisfy conditions (1.7) and (1.10). 
Then there exists c = c, = const such that myA (x (t, to, x0)) c (E*), U N,, i.e., y (t, to, 5) + 

(E* (co))~ U N* (CO) as t --f + m. 

Remark 3. The set N* (co) in the conclusion of Theorem 3 contains the y-limit points 
of the solution 5 = z (G to, 20) defined by sequences (Y (lk, 1,, 2,) - y, fl z (tk, t,, I”) 11 - + CO), and E* (co) 

contains the y-limit points of z= s(t, t,, +) such that 11 B (bk, t,, zo)II Q 1 for all tk-fm. 

3. If we assume that x (t, O)E 0, system (1.1) has the trivial solution x = 0. 
Reasoning from the previous results, depending on our assumptions concerning X, we can derive 
sufficient conditions for the solution x=0 to be asymptotically stable with respect to 
the variables y. The conditions are stated below as theorems. 

Theorem 4. Assume that 
1) there exists V = v (t, z), v (t, 0) = 0, which is positive definite as a function of 

y, V(t,z)>h(/y[l)>O /9/, and has a derivative along trajectories of system (l.l), v*+ (t, 
z) < --w (4 x) < 0; 

2) for every function Q(t,Y) which is a limit function for W(t,y,z(t)) relative to 
an arbitrary function z = z(t)EM,(t, to), 

{P, (t, c): c = const > 0) n {Q (t, y) = 0} = {y = 0) 

Then the solution x=0 of system (1.1) is asymptotically y-stable. 
The assumptions of this theorem relative to V’ are weaker than those of Rumyantsev's 

theorem /8, 9/ or of analogues of Marachkov's theorem /lo, ll/. 

Example 1. Consider the linear system 

y' = -sin2 ty -f- zI - z,e’, zI’ = zzet, z2’ = yemt (3.1) 

The derivative of this system for the function 2V= Y~$.(z,--z~~')~ is li= -sin* tya < 0. 
Since (I~ - z&< 2Vd ZV0 along solutions of the system, the right-hand side of the first 
equation in (3.1) satisfies condition (1.2) along every solution. The limit function for 
W (t, y) = sine tya is B (t,Y) = ~0 sin* (t + CC),~ = con&, o < CL <n. By Theorem 3, the solution y=t,=+=O 
is asymptotically stable. This result was obtained for a similar system in /9, 12/ by 
estimating the second derivative of V. 

Theorem 5. Assume that condition 1 of Theorem 4 holds, and also the following condition: 
for every function z(t)EM,(t, to) there exists at least one limit function Q (t, Y) for 

w 0, Y, 2 0)) such that (PO0 (t, c): c = const >O) n {Q (t, y) = 0} = @. 
Then the solution s=o of system (1.1) is asymptotically y-stable uniformly in x0. 

Theorem 6. In addition to condition 1 of Theorem 4, assume that v (t,x)2)hh,(I(sll), and 
also that for every limit function Q 0, Y) relative to an arbitrary family of functions 
{zn (1) E M, (t, vn), v, + + m as n-+m}, we have {P-(&c): c=const>O}fl {L?(t,y)=O}=@. 

Then the solution x=0 of system (1.1) is uniformly asymptotically y-stable. 
The assumptions of Theorems 4-6 are weaker than the corresponding assumptions of numerous 

earlier results /2, 8-10, 13/. 
Let us assume that y 0, 5) satisfies conditions (1.3), (1.4), so that ail+ (z 0, fci? x0)) 

is quasi-invariant with respect to systems (1.6). 

Theorem 7. Assume that 
1) there exists a function V = V (t, r), V (t, 0) = 0, V (f, 2) > h (II y II) 20, V++ (4 x) B --W (t, x) < 0; 
2) for every limit pair (Y,Q) relative to an arbitrary function 2 (t) E M, (t, to), the 

maximum subset of the set {P..(t,c): c = con&> 0) n (B(t,y) = 0) which is invariant with 
respect to the system y'=Y(t,Y) consists at most of the point Y = 0. 

Then the solution z = 0 of system (1.1) is asymptotically y-stable. 

Theorem 8. Suppose that in addition to condition 1 of Theorem 7 the following condition 
is also satisfied: relative to every function z(t)f M,(t,t,), there exists at least one limit 
pair (Y,Q) such that the set (P,(t,c):c = const>O} n {Q(t,y) = 0) contains no solutions 
of the system y' = Y(t, y). 

Then the solution x=0 of system (1.1) is asymptotically Y-stable uniformly in x0. 

Theorem 9. In addition to condition 1 of Theorem 7, assume that V 0. .r) d A, (II XII 1, and 
also that the following condition is satisfied: for every limit pair (y,Q) relative to an 
arbitrary family of functions {zk (t) EM, (t, I)~), vk + + 00 as k-+m}, the set 
const > 0) n (52 (t, y) = 0) 

{P, (t+ c): c = 
contains no solutions of the system Y' = y (t, Y). 

Then the solution x=0 of system (1.1) is uniformly asymptotically y-stable. 

Example 2. Consider the system 
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YL’ = -_y, i p (2) yz - y,ya2 sin* t (1 + sina (zl + za)) 
Yz' = P (t) Y* - rS i !~,*YP sin' t (1 + sin* (zl + tp)) 

%' = h V% Y, a), %' = fs tt, Y. 2) 

where ~($1 is a continuous function, 0 < p (Q $ 1, and so fl (t.0.n) =: fz (t, 0, 0) = 0. 
Limiting equations'for the first two equatians are 

(3.2) 

Ye’ = -9, .-I- p* (t) Y, - Y,Y~ sine (t + a) (1 + q* ftt) 
Y,‘ = P* tt) Y, - YZ - Y,*YS sina (t +  a) 0 +  q* 0)) 

(3 :%) 

where p* (t) and q* (tl are limit functions for P 0) and sin* (2, (t)+~1 (t)), and so q* (t) > 0. 
The derivative of the function V:= &s-t_ yZy)/Z along trajectories of system (3.2) is 

v'< --fv, - yg<o. It can be shown that the set f~,~f~,*>Of n {y%= yB} contains no solutions of 
the limit system (3.3). By theorem 9, the trivial solution of system (3.2) is uniformly 
asymptotically Y-stable. 

Similarly, starting from Theorem 3, we can deduce results relating to asymptotic Y- 
stability, asymptotic Y-stability uniform in 4, and also y-instability when the right-hand 
side of system (1.1) satisfies conditions (1.7), (1.9) and (1.10). They will not be presented 
here; similar results, incidentally, were obtained by other techniques and in a different 
form in /14, 151. 

Under conditions (l-7), (1.91, and <l.lO), we can also prove the following 

Theorem 2 0. Assume that 
I.1 there exists a function V = V(t,z) such that 

16, (II Y II 1 <; v (t, 5) < A, (II XII )V V‘+ (t, xf G --w (& m) < 0 

2) for any limit pair (@, A) of (X, W), the set {Tim-* (t. c}: e = con&> 0) fl (A(t,.r) = 
0) contains no solutions of the system Jr' = UT (t, I/); 

3) for any limit pair (Y,Q) of (Y, W) relative to an arbitrary sequence of continuous 
function5 {z~($)}, the set {P,(t, c): c = const > 0) fl (S2(t,y)= 0) contains no solutions of 
the system y' = '9 (t, y). 

Then the solution I = 0 of (1.1) is uniformly asymptotically Y-stable. 
We also note that similar techniques will yield results concerning partial instability. 

Example 3. Consider an inhomogeneous sphere rolling and rotating without loss of contact 
over a rough horizontal plane OXY which is oscillating vertically according to the law B-= z(t) 
about a fixed axis O*t II 0% where the 02 axis is directed vertically upward. Let us consider 
the case in which the centre of mass of the sphere is not its centre 0,, but the central 
ellipsoid of inertia is an ellipsoid of revolution and the axis of symmetry passes through 
the centre of the sphere. The configuration of the body is determined by the Cartesian 
coordinates x, y of the point of contact of the sphere with the surface, the R&al angles 8 
and J, and the angle of revolution e about the dynamical axis of symmetry 0,6, which is 
parallel to the plane OZZ /lb/. 

Using the notation of /lb/, we will consider the stability of the two families of 
equilibrium positions for the sphere in which 

fj Z' 0, I# = 0; 8 - n, II‘ pi 0 

and the centre of mass is on a single vertical below and above the point O,, respectively. 
Taking V.= T/(g -i :,'J - ml cos$ cosk'h where T is the kinetic energy of the body, as a 

Lyapunov function, we apply Theorem 9, to find that under the action of viscous friction, on 
the assumption that 

the first family of equilibrium positions is uniformly asymptotically stable with respect to 
I';. Y'. o‘, ip', *'. 8, li,; the second is unstable. 

~x~~Ze 4. A question of practical interest is that of the stability of steady motions 
of a Cardan-suspended gyroscope and the effect of the parameters on its stability j3.7, IS/. 

Using the formulation and formulae given in /I%/, we will consider the case of a system 
in which, driven by certain forces, the outer frame rotates at a constant angular velocity Q 
about a vertical axis, the heavy asymmetric rotor has a variable angular velocity dv/dt = o (t), 

and the axis of the inner frame is horizontal. We will single out those motions of the 
system in which the axis of the rotor points along the vertical, and the angle of revolution 
of the inner frame is accordingly 6-O. 

We will take as the Lyapunov function 
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V = VB (A cm* rp f B sina rp) i?‘Vk (t. cp, 6) + sin% (l/*6). k (t. cp. a) = 
CPo (t) + Mga, + (C’ - BP - B co.+ cp - A sin* cp) s/* cos2 ('i$) - 

(A - B) PO (t) sin cp cosa (l/,6) (inf (k (t, cp, O), 0 < cp < 2n) > k, > 0) 

After some computations we find that r< -ko6’e<0, if 

inf (k(t, cp, U) (U- (A-B)osin*cp) + (Acos’cp + B sinaq) X 

($ (~,~.(r)i~(~,rp,(i)o),O~rpd~n>k,>O 

Setting up the limiting equations and applying Theorem 9, we conclude that under these 
conditions the corresponding motion of the object is uniformly asymptotically stable with 
respect to 6' and 8. Analysis of the conditions indicates that the asymmetry of the rotor 
affects stability in an important way; at large o values the coefficient of viscous friction 
h should be fairly large. 

We note that when O= -Mga,iCB the system may also move with the rotor axis horizontal, 
6 = nl2. Following the previous analysis, we find the following sufficient conditions for 
this motion to be asymptotically stable with respect to 6' and 6: 

k, = (B + B, - C’) W - (A - B) MgaJC > 0 

(2h - (A - B) Mgn,/(Ca)) k, - A (A - B) ( 1 B 1 cop + P 1 o 1 ) > 0 

where we have assumed, to fix our ideas, that A >B. 

of 

1. 

2. 

3. 

4. 

5. 

5. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
17. 

18. 

The author is indebted to V.V. Rumyantsev for his 
this paper. 
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